
Transmission of electrons in a new type of disordered system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 10043

(http://iopscience.iop.org/0953-8984/3/51/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/51
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 3 (1991) lW43-1WS5. Printed in the UK 

Transmission of electrons in a new type of disordered 
system 

Hiroaki Yamadat, Masaki Godaft: and Yoji Aizawas 
i Graduate School of Science and Technology, Niigata University. Niigata 950-21, Japan 
$ Faculty of Engineering, Niigata University, Niigata 940-21, Japan 
9 Department of Applied Physics, Waseda University, Shinjuku. Tokyo 160, Japan 

Received 11 April 1991. in final form 13 August 1991 

Abstract. The distribution of transmission coefficients and Thouless numbers of electrons 
through a disordered system of finite size is studied both numerically and theoretically. The 
disordered system has a long-range structural correlation obeying an inverse-power law 
(generated by a modified Bernoulli map). We have found that 

(i) the Lyapounov exponents of the transmission coefficient and the Thouless number 
are positive definite in an infinite system and 

(ii) in a case of strong structural correlation the distribution of Lyapounov exponents of 
the transmission coefficient of a finite sysiem converges slowly with increasing system size, 
and it does not obey the central-limit theorem 

1. Introduction 

The one-electron problem in a one-dimensional random potential has been studied 
extensively by meansof avarietyof numerical and theoreticalmethods (Mott andTwose 
1961, Hori 1968, Erdos and Herndon 1981, Economou 1983). In particular, localization 
of the wave function in disordered systems has been the most important problem to be 
solved. After an enormous amount of discussion, it has been established that in one 
dimension (ID) the disordered system has a pure point energy spectrum and its eigen- 
functions are exponentially localized in an infinite system (Golidsheid et aZl977, Mol- 
canov 1981). As a result, the ensemble-averaged conductance and transmission coef- 
ficient of a large enough system decrease exponentially with respect to the system size. 

However, it is important to mention that most of the random potentials used up to 
now in these studies are of short-range structural correlation (SRSC). The SRSC means 
that the correlation function of the potential decreases exponentially or faster than it 
with respect to the distance, i.e. thecorrelationlengthisfinite. These disorderedsystems 
of "are believed to belong to one universality class in ID. This idea has been suggested 
by the scaling theory of localization (Abrahams et nl1979). The idea of one universality 
class in each dimension is supported also by a qualitative argument with a real-space 
renormalization technique. By meansof the real-space renormalization (Lee 1979, Aoki 
1980, Sarker and Domany 1981) the Hamiltonian of the system with SRSC is expected to 
be translated into the renormalized Hamiltonian which has a shorter correlation length 
than that of the original one. Accordingly, these potentials of SRSC are expected to 
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approach an ideal random potential after a sequence of the renormalization has been 
applied to it, because the finite correlation length decreases and finally vanishes by the 
successive operation of an appropriate real-space renormalization. 

There is a different class of random potentials, whose correlation functionsdecrease 
according to a power law and hence the correlation lengths are divergent. Because the 
power-law correlation is invariant under this kind of real-space renormalization, the 
random potential does not approach an 'ideal random potential' by the successive 
operation of the renormalization. 

We thus are interested in whether there are some differences in the behaviours of 
the above two types of random system. 

In the separate papers (Aizawa er a1 1991, Goda et a1 1991), we have studied a 
fundamental feature of the electronic state in a disordered system with long-range 
structural correlation (LRSC) generated by a modified Bernoulli (MB) map. In these 
studies, we have obtained the following results. 

(1) The Lyapounov (L) exponent of the wavefunction (at the band centre) is a 
positive constant in an infinite system for almost every sample (for 1 s E < 2). The 
parameter B controls the correlation strength of the potential with LRSC. 

(2) Thedistributionoftherexponent of the wavefunction fora finitesystemexhibits 
a slowly convergent property with respect to the system size when the structural cor- 
relation of the system becomes strong (for $ == B < 2). 

Because thespectral property and thedistributionof theLexponentofwavefunctions 
are two fundamentals specifying the system, properties (1) and (2) must affect various 
physical phenomena of the systems. 

Some workers have raised the objection that the transmission coefficient and the 
absolute square of the wavefunction are essentially the same quantities. In fact we can 
easily prove that the absolute values of the L exponents of these two quantities coincide 
in an infinite system. However, when we consider the distributions of these quantities 
for a finite system, the relation between them is not simple. It is necessary to study 
carefully these quantities in the new class of disordered systems, because an unusual 
feature has been observed in the distribution of the L exponents of the wavefunction for 
a finite system size. Therefore, the main purpose of the present paper is to study the 
distribution of two more realistic physical quantities: the transmission coefficient and 
the Thouless number in the random system with LRSC. 

This paper isconstructed as follows. In section 2 we give a brief review of the ME map 
and MB electronicsystem. In section 3 the transmission coefficient andThouless number 
are numerically studied and analysed by adopting some scaling properties for them. 
Section 4 is devoted to the theoretical background which justifies the scaling properties 
adopted in section 3. Finally, the results obtained in this paper are summarized in 
section 5. 

2. Preliminaries on the modified Bernoulli map 

Consider a one-electron system described by a tight-binding Hamiltonian of the form 
N - 1  N - 1  

H =  In)~,(nl - (b) (n  + 11 +In + N n l )  (2.1) 
"=!I " = a  

where the functions {In)} denote an orthonormalized set of bases and the set of site 
energies {E"} has been generated by a MB map. 
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The ME map is a one-dimensional map proposed in order to reveal the statistical 
properties of an intermittent chaos (Aizawa and Kohyama 1984): 

where B is a non-negative bifurcation parameter which controls the strength of the 
structural correlation in the sequence {Xn}. This sequence (X"} is symbolized by the 
following rule: 

O = = X n = = B - + E n = - E  

tsx, s 1-+ E. = E. 
(2.3) 

We briefly review in the following some essential points of the symbolic sequence {E> 

characterized by the bifurcation parameter B on the bases of the results derived by 
Aizawa and Kohyama (1984), Aizawa (1984) and Aizawa et a1 (1984). Although the 
sequence {EJ is created by the one-dimensional deterministic map, the correlation 
function decays exponentially or by a power law, because it is a chaotic sequence. So, 
we can regard the pseudo-random sequence {E.} as a disordered sequence. 

When Breaches the value 2 from below, the sequence {E> changes its characteristic 
drastically from stationary chaos characterized by the w-"(O e U < 1) power spectrum 
for w Q 1 to non-stationary chaos characterized by the w-'(v 3 1) power spectrum. As 
a result, for B 2 2 the sequence {E"} of finite size becomes one of two kinds of pure 
sequence (i.e. { E ,  E ,  E ,  . . ., E }  or { - E ,  - E ,  --E, . . ., - E } )  for almost every sample. In 
this paper we deal with only the stationary regime (1 S B < 2). The sequence { E ~ }  in 
this regime is rewritten in general as {(mo, U),  ( m i ,  -U) ,  (m2, U ) ,  . . ., (mk,  U ) ,  (mk+i, 
-U) ,  . . .}. Here (mx, U )  denotes the mk times iteration of the same symbol U, where U 
represents &or - E .  The distribution P(m, U )  of the number m of times of the iteration 
in the pure sequence (m,  U )  (called the residence time m in the paper of Aizawa eta0 is 

P(m, U )  = c [ l  + ( B  - 1)mI-B (2.4) 
which is independent of the value of the symbol U, where p = B / ( B  - 1) and c is a 
normalization constant. The ensemble-averaged residence time (m) over thedistribution 
(2.4) is finite for the stationary regime 1 s B < 2 but is divergent for the non-stationary 
regime B 3 2. Furthermore, the correlation function and the power spectrum of the 
sequence {E.} are given as follows: 

C(n) = (&,,&.)E$ - { I  + ( B  - l )n}(B-2)/(s- ' )  (2.5) 
(2.6a) 

(2.6b) 

Confirming - m <  (B - 2)/(B - 1) < 0 for 1 < B < 2, equation (2.5) describes an 
inverse-power-law structural correlation form * 1 in the sequence {cn}. In the range of 
the bifurcation parameter 1 < B < $, the white powerspectrum in equation (2.6) shows 
that the corresponding sequence {EA has only SRSC. In the range 2 < B < 2 the second 
moment (mZ)  of the residence time diverges and this is the case on which we shall focus 
our attention in this paper. 

Nowwereturn totheHamiltonian(2.1).Whenthesymbolicsequence(~,]represents 
the sequence of site energies as in the Hamiltonian ('2. l), we call the residence time m the 
cluster size m. The Schrodinger equation described by it is qnt = (E - E,&, - qn-,, 
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where qn is the amplitude of the wavefunction at site n. The equation is rewritten in the 
form 

(::+') = M. (::) = Ti ('I) 
i-I 

1 E - E i  -1 

0 
T,= 

where Ti is the transfer matrix. 

3. Numerical results: transmission coefficient and Thouless number 

The transmission coefficient T(N) of a finite system with system size N ,  of band centre 
energy ( E  = 0) as a typical example, is given as 

T(N) = ~(IIMNII~ + 2)-' (3.1) 
where IIMN1(Z denotes the sum of the squares of each element of the transfer matrix M,v 
in equation (2.7) (Stone et nl 1981). The transmission coeffkient depends only on the 
transfer matrix MN itself and is independent of the boundary condition, differing from 
some other physical quantities depending on the wavefunction. 

The Thouless number g ( N ) ,  which reflects the property of eigenfunctions and des- 
cribes the conductance of the system, is defined as 

g(N) = AE,(N)/AW(N) (3.2) 
where AE,(N) is the shift of the ath energy level due to changing the boundary condition 
from a periodic one to an antiperiodic one, and A W(N) is the mean spacing of its energy 
levels (Thouless 1974). The Thouless number has been used to distinguish whether the 
eigenstate is localized or not. We select in this paper, as a typical example, the middle 
member of the eigenstates with respect to the energy as the ath state, by considering 
only the system with an odd system size N .  

Figures l(a) and l(b) show two sample averages, (In T(N)) and (Ing(N)), for some 
values of the bifurcation parameter B ,  where (. . .) denotes a sample average. The ZI5 
samples of the same size N are selected from a huge sequence {E"} starting from an initial 
valueXointhemapping(2.2). Itseemsinfigure l(a)and l(b)asif(ln T(N))and(lng(N)) 
decrease exponentially with increasing system size N .  

Hence we calculate numerically the distribution of the L exponents of the trans- 
mission coefficient -[In T(N)] /N ( = y )  which is of finite size and investigate its asymp- 
totic behaviour as it approaches an infinite system, in order to understand the 
transmission coefficient in more detail. 

Figures 2(a) and 2(6) show the histograms of the distribution of y over 2"samples. 
(ThepotentialstrengthEhasbeen takento havethe value0.6.) Just ashas beenobserved 
in the L exponent of wavefunctions in the paper by Goda et a1 (1991). two kinds of 
distribution coexist also in the distribution of the L exponent y of the transmission 
coefficient T(N) for the case B = 1.7. This double-peak structure of the distribution 
comes from the LRSC of the MB map. 

As has been mentioned in the introduction, it is not obvious that the distribution of 
the transmission coefficients is the same as that of the wavefunctions in the finite-size 
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B = I S  A o  

0 8 4 . 7  
I O  

-15 L A 300 

0 100 200 

* B=1.9 I * . 
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N N 
Figure 1. me numerically determined average of the (a )  transmission coefficient (In T(N)) 
and (b)  Thouless number (In g(N) )  as functions of the system size N. The potential strength 
~hasbeengiven thevalue0.5. 

system. What kind of property is derived from the distribution of the transmission 
coefficients? To understand the details of the distribution we define the operation (. . J2 

asthe average overpartsin the2I7samples (forming thesecond distribution). Thissubset 
of samplesisobtained by subtracting the samples composed of pure clusters (forming a 
sharp distribution around y = 0 in the distribution) from the whole sample as in the 
paper by Goda etal. For a fixed N ,  the number of samples concerned with the average 
(. . .)*decreases more and more, when the value of E increases and becomes close to 2. 

For example, the N-dependence of ( y )  and ( Y ) ~  for E = 1.7 and E = 1.9 are shown 
in figures 3(a) and 3(b). To  infer the sampling uncertainty, the data from systems with 
different initial values Xo of the mapping (2.2) are plotted in figures 3(a) and 3(6). By 
considering numerically the asymptotic behaviour of the L exponent y with increasing 
system size N ,  we found the following scaling form: 

( y )  = constant (3.3) 
( Y ) ~  = c2(B)N-"') + y,(E). (3.4) 

The scaling form of the L exponent will be confirmed by a theoretical argument in section 
4. Figures 4 and 5 show numerical values of A(E) and y,(E), respectively, determined 
by least-squares fit in equation (3.4). The value of A(B) approaches zero when E 
approachesthevalue 2.0. In other words,(y)2becomesindependent ofNwhenE = 2.0, 
where the stationary-non-stationary chaos transition occurs in the MB map. Concerning 
y,(E), which describes the L exponent y of the transmission coefficient in an infinite 
system, the value decreases with increasing bifurcation parameter B. Although the L 
exponent y,(B) in an infinite system is expected to vanish at E = 2.0, the functional 
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Figure 2. The histogram of !he L exponent of the transm~ssion co:lncicnt of a hnire sysrem 
withsystemsizesN = 128.256.512and 1 0 2 4 , o ~ t a i n ~ d n u m e n r ~ l )  fromanensembleof?" 
systems. The poienual strength P has been glren the value O.6and the bifurcation parameter5 
B a r e ( a )  I.Oland(b) 1.7 

Fipnrc 3. .V-dependencer of the L exponent ( y J  of 6mle size ( x )  snd the exponent (yh on rhe 
reconddistnbut~on(-). The bifurceuonparamercrr Barein) 1.7and(bl1 9 T h e  numerical 
daraabr~neaforfourd~flerenrialinitiat~aluesXo= I V2, l i~ ,3 , '5and.1 /5areplo lrcd 
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B 
Figure* Estimatedvalueoftheexponent A(B)in 
equation (3.4) as a function of bifurcation par- 
ameter B:  +, numerical data for A(B) obtained 
for four different initial values X , =  
l/*, l/*, 315 and 415; ---, A(B) = (2 - B)/ 
( E  - 1)inequation (4.8)estimated theoretically. 

O.O3.4 1.6 1.8 2.0 

B 
Figurc 5. Estimated value of the L exponent ye 
(from equation (3.4)) as a function of the bi- 
furcation parameter B. The numerical data for 
y.(B) obtained for four different initial values 
X ,  = l/*, lid, 315 and 415 are plotted. 

form of y,(B) near B = 2.0 is very hard to estimate from our numerical data, because 
numerical accuracy of the distribution of y is extremely incorrect for B close to the value 
2. However, to compensate for the numerical insufficiency on this point, a discussion 
will be given in section 4 to clarify the nature of y,(B) near B = 2.0. 

Moreover, we have confirmed numerically that the L exponent of the Thouless 
number also has a positive value for 1 c B < 2 in the same way as above. 

Next, consider the fluctuationsof yfrom(y),in the second distribution. The scaling 
form 

is found numerically by fitting the data, where Ay is y - ( Y ) ~ .  The estimated value of 
x ( B )  is plotted in figure 6. Sor 1 < B < #, the value of x ( B )  is roughly t, implying that 
theconvergent property of thedistribution of ywith respect toNobeysorapproximately 
obeys the central-limit theorem (CLT). However, it is surprising that for # s B < 2 the 
distribution converges more slowly than that obeying the CLT. In our numerical data 
used in figure 6 ,  the local slope in the In-In plot of equation (3.5) slightly depends on the 
system size N .  For 1 G B S 8, the local slope for a comparably large system size N 
(aroundN = 2'O in figure 6) tends to be closer to the value 4 than the data in figure 6. For 
< B < 2,  it tends to decrease less than that in figure 6. Owing to the strong and long- 

range correlation between local structures of the sequence { E ~ } ,  the L exponents y of 
subsystems in a huge sample still have a long-range correlation. This corresponds to 
the large deviation property of the symbolic sequence {E,) (Aizawa 1989). All these 
properties of T(N) agree with those of the wavefunctions. 
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B 

Figure 6. The exponent x ( B )  of the power for 
the standard deviation of the L exponent of the 
transmission coefficient as a function of the bi- 
furcation parameter B. The numerical data for 
X(B) obtained for four different initial values X,, = 
l/*, l/V% 315 and 415 are ploned. The inset 
shows some data of the standard deviation as a 
function of system size: -, least-squares fit .  

Now, consider the beta function of the transmission coefficients (Abraham et a1 
1979, Lee and Ramakrishnan 1985). From the assumed form (3.3) and (3.4), we can 
derive that 

NN)  = W n  T(N))/@n N) = (In T(N)) (3.6) 

pz(N) = J(ln T(N)),/a(ln N) = (In T(N))2 + c , ( ~ ? ) A ( B ) N ’ - ~ ( ’ ~ .  (3.7) 
That is, 

&(N) = Y +AY1-’{l  + DY-’[l + DY-’(. . . ) t - A ] l - A } l - A  (IYI 1) (3.7‘) 
where Y = (In T(N)),, A = A(B)c2(B)[-ym(B)]*,  D = ~ , ( i ? ) [ - y , ( B ) ] ” ~ .  The above 
p2(N) has a correction term c2(B)A(B)N’-*(’) in it, which is not in the scaling function 
of an ideal random system. The leading term of the correction term in p2(N) is AY‘-A 
for lYI + 1 which depends on the value of B. Figures 7(a) and 7(b) show the numerical 
resultsof p(N) andp2(N) calculated from the data in figure l (a) .  Numerically we cannot 
see a clear difference between the two scaling functions p(N) and p2(N) in the figures 
because the correction term in equation (3.7) is small. Figures 8(a) and 8(b) show the 
beta functions of the Thouless number from the data in figure l(b). 

4. Discussion based on Furstenberg’s theorem 

In this section we try to apply the Furstenberg (F) (1963) convergent theorem on a 
product of random matrices to a random system with LRSC obeying the inverse-power 
law. 

An essential point on applying it is that the sequence {&} which we deal with is a 
purely random sequence of pure clusters (called a renewal process) with a pure cluster 
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<InT(N)> 
-711 -10 0 
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Figure7. ( U )  The beta functionpof the transmission coefficient numerically calculated from 
the data in figure I(u). (b) The beta tunction p2 obtained for average operation (. . .)2. 

size distribution P(m) - m-8, Then the m iterations of symbol u and the adjacent n 
iterationsof symbol -ohave a joint probability 

p(m,  n )  - m-pn-8. (4.1) 

The transfer matrix corresponding to this event is 

(4.2) 
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I I O  
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. .* 
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A B=1.9 
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- -2 

- -4 E, 
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a 

Figure 8. (a )  The beta function 
data in figure l(b). (b)  The beta function & obtained for average operation (. . . )a .  

of the Thouless number numerically calculated from the 

The sequence {X(m,, ni))(i = O-OC) is composed of mutually independent stochastic 
variables X(mi, ni) in the special linear group s ~ ( 2 ,  R) with a common distribution 
P(m,n). Let G denote the smallest closed subgroup of SL(2, R) containing the support 
ofthecommon distributionP(m, n).  Thenif Gcontainsatleast twoelementsof SL(2, R )  
with common eigenvectors, under an additional condition 

(4.3) 
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where IllX(m, n)lll = sup~~.~ll= IlX(m, n)uoll it is a sufficient condition of the Fcondition 
for establishing the F theorem (Matsuda and Ishii 1970, Ishii 1973). 

Here, we consider for example two elements of SL(2, R): X(l, 2), X ( 2 , l ) .  Then, 
there are no common eigenvectors in these two matrices, and the additional condition 
(4.3) is also satisfied for the common distribution (4.1) for B < 2. It is thus proved that 
the Fcondition is satisfied for E = 0. Moreover, it is proved that, at least, the F condition 
is satisfied for any energy except for several special energies. Accordingly, we get from 
the F theorem 

L 

Prob [ lim [i In (1) n X(mi, ni)uo 11)] = Q(B)  > 0) = 1 1<;8<2 (4.4) 
L- - j = O  

foruo=(q1,qo) 'ER2- {O}forE=0. 

large system, where (m) is the mean cluster size. Then we have 
As for the real system size N, it is reasonable to expect N = 2L(m) for a sufficiently 

If the mean cluster size (m) is finite (1 6 B < 2), the quantity + q%) of the 
wavefunction in the random systems increases exponentially with increasing system size 
with probability 1 for any initial vector uo E RZ - {O}. In addition it has been known that, 
for large N, the L exponent of the wavefunctions is equal to the corresponding exponent 
of the transmission coefficients. Accordingly, ( y )  in section 3 is a positive constant 
for N % (m),  i.e., T(N) decreases exponentially with increasing system size N with 
probability 1. These results based on the F theorem are consistent with Kotani's (1984) 
theory which states that one-dimensional Schrcdinger operators with an ergodic and 
stationary random potential have a positive L exponent of wavefunction with prob- 
ability 1. 

Now the N-dependence of (y)* is estimated by use of the probability R(N) that two 
pure clusters appear with size N, defined by 

Accordingly we have 

(Y) = W N N )  - [1 - R(N)I(Y)~ (4.7) 

where T(N) corresponds to a y of periodic sequence with size Nand is of the order of 
K'. From equation (4.6), (y}2 is estimated approximately as 

(4.8) 

where c is the normalization constant in equation (4.6). Equation (4.7) supports the 
inverse-power law equation (3.4) for the N-dependence of ( Y ) ~  numerically found in 
section 3. The value of A(B) in figure 3(a) for B < 2 is, however, different from the 
exponent -(B - 2)/(B - 1) in equation (4.7), although the overall features of the B- 
dependence coincide. This disagreement arises because of the finite size effects or 
shortage of sample and these influences are increasingly enhanced as B becomes close 
to 2. 

( Y ) ~  = (y)(l + C N ( ~ - ~ ) / ( ~ - I ) )  
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Finally we mention the L exponent y,(B) near B = 2. In the expression for the L 
exponent in equation (4.4) we have shown that the mean cluster size (m) diverges for 
B = Zaccording to equation (4.5). On the other hand the quantity Q(B)  does not seem 
to change drastically near B = 2 It seems to be finite. The L exponent y=( B)  in an infinite 
system is thus expected to decrease continuously when B approaches the value 2 and 
finally to vanish at B = 2. 

5. Summary and conclusions 

We have studied the L exponent of the transmission coefficient y in a disordered system 
with LRSC generated by the MB map by means of numerical and theoretical methods. 

The results obtained in this paper are summarized as follows. 

(1) The mean value of the L exponent ( y )  of the transmission coefficient of a finite 
system is a positive constant with respect to a system size N for N 9 (m) for 1 e B C 2 
This agrees with the results of ordinary random systems. 

(2) The L exponent ( y )  in an infinite system is thus positive for 1 B C 2 but is 
expected to decrease continuously when B approaches 2 and finally to vanish at B = 2. 

(3) {y)* has a scaling form for N 9 (m) given in equation (3.4) with respect to the 
system sue N .  The beta function &(N) of the transmission coefficient is different from 
that of ordinary random systems. 

(4) The convergent properties of the distribution of transmission coefficient with 
respect to the system size N do not obey the CLT at least for 4 < B < 2. The slow 
convergence corresponds to the large deviation property of the symbolic sequence {E"}.  

(5) Statement (1) has been confirmed also for the Thouless number, 

It should be noted that the results obtained in this paper are well analysed by the use 
of a renewal process which has been found in the sequence {E"}. When the system with 
a continuous version of the potential as{X.} is constructed, we cannot utilize a powerful 
tool such as the renewal process. It is thus not clear at this stage whether the continuous 
version of the ME electronic system also exhibits the same results. This problem remains 
for future study. 
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